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Abstract. Mode sorter is the crucial component of the communication systems based on orbital 
angular momentum (OAM). However, schemes proposed so far can only effectively sort integer 
OAM (IOAM) modes. Here, we demonstrate the effective sorting of fractional OAM (FOAM) 
modes by utilizing the coordinate transformation method, which can convert FOAM modes to 
IOAM modes. The transformed IOAM modes are subsequently sorted by using a mode conversion 
method called topological charge matching. The validation of our scheme is verified by 
implementing two FOAM sorting processes and corresponding mode purity analyses, both 
theoretically and experimentally. This new sorting method exhibits a huge potential of 
implementing a highly confidential and high-capacity FOAM-based communication and data-
storage system, which may inspire further applications in both classical and quantum regimes. 
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1 Details about the coordinate transformation and the transformation phase �� 

To begin with, the optical coordinate transformation method is based on the General Snell’s 

Law (GSL) in ray optics. The GSL points out that, when a light beam passes through an interface, 

the refractive angle of the output beam is determined by the refractive index and the phase gradient 

of the interface, which is given by 

������� − ������� = �
�

��
��

, (S1)     

where � and � is the refractive index and the angle, k is the wave vector in free space and � is 

the phase distribution on the interface. �  and �  means the refracted beam and the input beam 

respectively, as shown in Fig. S1(a). Next, we consider the propagation of a parallel light between 

two planes in free space showed in Fig. S1(b), where there is a distance � between the input plane 

(�, �) and the output plane (�, �). The input light on (�, �) on the input plane will be refracted and 

locate on (�, �) on the output plane. The relationship between the two points is determined by Eq. 
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(S1). If the incident beam is perpendicular to the input plane (�� = 0) and the propagation is 

paraxial (����� ≈ �� = ���
�

), the GSL can be simplified as the formulas 

�� = �(������� − �������) ≈ ��� = �
� − �

�
, �� = �

� − �
�

, (S2) 

where �(�, �) is the transformation phase loaded on the input plane and �� and �� are the partial 

derivatives with respect to (�, �). Therefore, the mapping rule between (�, �) and (�, �) is totally 

determined by �. And the phase � can be easily obtained by substituting the mapping rule into Eq. 

(S2) and calculating the integral. In our method, the mapping rule is a spiral-to-spiral rule. The 

input field is separated by several spirals and mapped onto another group of spirals on the output 

plane. Figure S1(c) is the schematic of our coordinate transformation and clearly illustrates the 

mapping from spirals to spirals. The input vortex field is divided by two groups of curves. Group 

1 (blue) consists of a small circle and a spiral, and group 2 (red) consists of a large circle and the 

same spiral. The region between the two sets of curves completely covers the entire vortex field. 

After the transformation, each group of curves is located on a new spiral. These two new spirals 

meet head to tail and form a closed area. 

 
Fig. S1 (a) The General Snell’s Law. (b) Coordinate mapping between two planes. (c) Schematic of the spiral-

to-spiral transformation. 

 

In order to better describe the mapping rule and calculate the corresponding phase, the input 

plane is redefined in terms of spiral-polar coordinate described by the radial coordinate � and the 

spiral azimuthal coordinate � varies in [0, +∞). Similarly, the output plane is redefined by � and 

�. Then the mapping rule in our method is described by (Eq. (2) of the main text): 
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� = ����/�, � = �/�, (S3) 

where � is an arbitrary constant and � is the transformation factor. The simplified GSL formulas 

Eq. (S2) written in the Cartesian coordinate should be rewritten in the spiral-polar coordinate, 

which is  
��
��

=
�
�

(� cos(� − �) − �),
��
��

=
�
�

�� sin(� − �) , (S4) 

Then by substituting Eq. (S3) and calculating the integral of Eq. (S4), the transformation phase 

�� can be easily obtained (Eq. (3) of the main text). The calculation of the correction phase �� is 

detailed in the main text.  

The additional correction phase � is introduced to compensate for the discontinuous points in 

the azimuthal phase of the output mode. As the middle column of Fig. 1 shows, the position of the 

��ℎ discontinuous point is �� = � ��
�

 (� = 0,1,2 …). The output plane is divided into several 

regions by these points and the ��ℎ region is between two neighboring discontinuous points �� 

and ����. Therefore, the point (�, �) is on the region labeled by ���
��

�. The phase difference on 

the discontinuous point is determined by the input mode, which is �� = 2����(ℓ��, 1). The 

compensation is to make up the region after the point. However, different regions require different 

phase compensation, because if we add �� to the first region, the second region needs 2�� to 

compensate. Finally, the additional correction phase � is 

�(�, �) = �� × �
��
2�� = 2�� �

��
2�� , (S5) 

where � = ���(ℓ��, 1). 

2 Details about the correction phase � 
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Fig. S2 The additional correction phase � for different parameters (a) � = 1/2, � = 2. (b) � = 1/3, � = 3. 
(c) � = 1/4, � = 4. 
 

The additional correction phase � is expressed as  

�(�, �) = 2�� �
��
2�� , (S6) 

where � = ���(ℓ��, 1). � remains identical for the same t, indicating one correction phase � 

can be applied to a set of FOAM modes with the same � instead of with the same ℓ��, such as all 

half-integer FOAM modes (ℓ�� = 1.5, 2.5, 3.5 …) with � = 0.5. Consequently, the same corrected 

phase distribution does not work only for a particular incident light beam. In the practical 

applications, we can use such a group of FOAM modes to realize FOAM communication system. 

Simultaneously, this feature also inherently provides encryption to the communication system, 

where the efficient sorting relies on the �-dependent coordinate transformation which acts as the 

encryption key. Figure S2 shows some different corrected phase distributions superimposed on the 

spiral transformation. It is clearly that the phase distribution is the same for FOAM modes with 

the same �.  

3 The effect of the spiral’s parameters on spiral transformation 

 
Fig. S3 The transformation results with (a) � = 1/2, � = 2. (b) � = 1/3, � = 3. (c) � = 1/4, � = 4. 
 

The spiral used in our method is the logarithmic spiral defined by  

� = ����, � ∈ [0, ∞) (S7) 

where � is the initial radial position and � is the exponential growth rate. In our coordinate 

transformation method, the input field is separated by this spiral and mapped onto another spiral 

on the output plane which is defined by 

� = c���/�����, (S8) 
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The parameters � determines the position of the spiral while � determine the shape of the spiral. 

Figure S3 illustrates the transformation results with different parameters, in which the green region 

represents the vortex field. Figure S3(a) shows one successful mode conversion with appropriate 

parameters. The successful mode conversion requires that the input vortex field can be completely 

split by the spiral and that the output field can form a complete vortex shape. Specifically speaking, 

the classical vortex field is a halo pattern surrounded by two circles with two different radii. In 

order to meet the first requirement, the parameter � should be close to the inner radius. If � is close 

to or even larger than the outer radius, the segmentation of the incident vortex light field is invalid. 

For the second requirement, the parameter � needs to be in a suitable range. � determines the 

growth rate of the spiral’s radius. A large � will result in a small number of turns of the spiral 

within the vortex field, leading to an incomplete output vortex pattern as shown in Figs. S3(b)-

S3(c). It is worth mentioning that, the segmentation becomes finer with a smaller �, but this will 

be limited by the resolution of the phase modulation element. Therefore, � needs to be in a suitable 

range in experiment. 

4 The calculation of the crosstalk between different OAM modes 

The overlap integral between the optical fields is calculated by the formula50 

��� = � ��
∗(�, �)��(�, �)���� , (S9) 

which expresses the crosstalk amplitude between OAM mode 1 and OAM mode 2. Thus, the 

relative crosstalk power can be expressed as 

��� = �
���

���
�

�
, (S10) 

Considering that in the real experiments we will separate different modes by spatial filtering, 

the integration region is the central region of the whole optical field with a radius of 100 ��, which 

is consistent with the radius of spatial filter. The obtained crosstalk matrix51 is shown in Fig. S4, 

which proves that the crosstalk between different FOAM modes is very low when using a spatial 

filter for sorting.   
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Fig. S4 The crosstalk matrix ������� for (a) � = 1/2, � = 2. (b) � = 1/3, � = 3. 

5 Principle of the OAM mode purity analysis 

The beams extracted by our method are further analyzed by purity analysis. Basically, the output 

field can be expanded and represented by a linear combination of basis IOAM modes following 

the equation 

�(�, �) = � �ℓ

��

ℓ���

(�)exp(�ℓ�). (S11) 

Therefore, the complex coefficient for topological charge ℓ can be calculated as  

�ℓ(�) = � �(�, �)exp(−�ℓ�)
��

�
d�. (S12) 

And the intensity and the corresponding mode purity of the OAM mode with topological charge 

ℓ is 

�ℓ = � |�ℓ(�)|�
��

�
�d�,   �ℓ =  �ℓ/ � ��

��

����

(S13) 

In our experiment, this process is performed by using an OAM detection system consists of SPP, 

L7, and CCD. SPP with topological charge ℓ is used to superimpose the basis IOAM mode on the 

output field. The Fourier transformation on the resultant field is performed using L7 which is 

positioned away from the SPP with a distance of �. The intensity distribution at the Fourier plane 

is recorded using CCD. The on-axis intensity shows the intensity of −ℓth-order OAM mode. In 

practical experiment, the on-axis intensity is the average intensity in the central region, which is 

determined by the central Gaussian-like spot obtained under the condition of matching. By 

replacing different SPPs, we can obtain the intensities of different OAM modes and calculate the 

corresponding purities.  


